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Abstract

This paper introduces a new procedure to control for family error rate (FWER) in picking

out-performers. The method utilizes multiple side information to more precisely estimate

the FWER and gains much higher power in detecting out-performers compared to existing

ones. In assessing hedge fund performance context, the new method allows investors

picking out-performing funds with high confidence, that is, with very low FWER. The

yearly rebalancing portfolios of hedge funds constructed by the new method with use of

available covariates beat passive benchmarks in various settings. Our further experiments

show that the new method detects truly out-performing hedge fund managers who can

repeat their past performance over a long horizon.
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1. Introduction

Literature on hedge fund performance has extensively focused on understanding the

risk-return characteristics of hedge funds. Those studies cover the persistent performance

of hedge fund managers (see, e.g., Agarwal and Naik, 2000; Baquero et al., 2005; Kosowski

et al., 2007; Sun et al., 2018), and the relationship between characteristics of the funds

and their performance. Based on these findings, investors can create portfolios by sorting

hedge funds based on their characteristics and past performance. However, forming

portfolios in this manner has several caveats that make them impractical in practice.

First, due to the large number of funds available, sorting portfolios, such as those created

through quintile partition, can become large in size. Each hedge fund typically requires a

significant minimum investment, which implies a huge investment requirement. Second,

if only a few funds is chosen, via the rankings of the characteristics and other potential

predictors, it is likely that some lucky funds are selected without proper control. Third,

existing approaches in fund performance literature that controls for lucky funds focus

on false discovery rate (FDR), which is expected proportion of non-outperforming funds

among those selected as out-performers. In hedge fund application, controlling for this

type I error is too loose as there exist many out-performing hedge funds (see, e.g., Chen

et al., 2017). Consequently, portfolios of hedge funds are again too large in size and more

importantly, there are virtually some non-outperforming funds in portfolio at all time.

To have high confidence in hedge fund portfolio selection, investors require a tool

to control for a more stringent error. For this purpose, controlling for the family wise

error rate (FWER), which is probability of selecting at least one non-outperforming fund

in forming the portfolio, provides a well-suited solution. To explain this, suppose the

investors control for FDR at 5% when forming their portfolio. Then they would expect

there are always about 5% of funds in the portfolio are non-outperforming. In contrast,

if they control for FWER at 5%, the chance of having non-outperforming funds in the

portfolio is 5%. Loosely speaking, if they form such portfolios yearly over 100 years, they

should expect only about 5 years where their portfolio containing some non-outperforming

funds. Thus, when the investors opt to control the FWER instead of the FDR, they gain



a much higher level of confidence in their investment decision, especially when substantial

amounts of capital is involved, as is often the case in hedge fund investments.

Literature in controlling for FWER in detecting out-performers is rich with notable

contributions of White (2000), Romano and Wolf (2005), Hansen (2005) and Hsu et al.

(2010). The main focuses are developing testing procedures that control for FWER

while enhancing the performance in terms of power. All of the mentioned works rely on

bootstrapping procedures and exploit only raw information such as return of funds or

trading strategies. Investors’ flows chase for funds that are truly out-performing, i.e., the

ones that generate positive alpha - the excess return adjusted for some passive benchmark.

However, hedge fund return series are usually short. Consequently, the investors assess

funds based on a short periods of time, typically 24 or 36 months (see, e.g., Kosowski et al.,

2007; Cumming et al., 2012; Chen et al., 2017). Given the small number of observations,

the mentioned existing FWER methods are struggling in detecting even a small number of

the out-performing hedge funds. A more powerful procedure is therefore in high demand.

This study fills the gap by introducing a new approach to control for FWER. The

new approach is based on statistical framework of Zhou et al. (2021), which estimates the

FWER as a function of multiple informative covariates. The new approach deviates from

the framework of Zhou et al. (2021) by specifically aiming to control the FWER among

the discoveries in the right tail. It is well-suited to controlling for luck in the hedge fund

portfolio selection. First, it has a high power in detecting out-performing hedge funds,

which allows investors picking fund with a very low FWER. Secondly, while effectively

controlling for such a low error rate the approach is able to select a reasonable number of

funds, thereby making the investment size more feasible. Third, and more importantly,

the hedge funds identified by the new approach, though based on assessment over a short

period, perform persistently in some long out-of-sample (OOS) periods. This makes the

method a high potential in real world practice.

Distinguished from existing methods that solely rely on funds’ adjusted returns or al-

pha, our approach harnesses multiple sources of side information to enhance the detection

power. More specifically, we assess performance of a fund via testing its alpha against
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zero. We implement the framework of Zhou et al. (2021) with use of the side information

to detect all funds that having significant non-zero alpha. As we are focusing on the

right tail of the alpha distribution, we select as out-performing funds the subset of those

detected non-zero alpha funds having positive estimated alpha. We name this procedure

the FWER “plus” (fwer+). We show that the procedure controls well for FWER at

any given targets, and when an informative covariate is available, it gains an impressive

power in detecting truly positive alpha funds. Controlling for FWER at 5% target, our

procedure outperforms the stepwise approaches of Romano and Wolf (2005) and Hsu

et al. (2010), the two most powerful ones in recent finance and economics applications,

with gaps that varies from 1% to 15% depending on the number of observations per fund

and the informativeness level of the covariates.

In empirical experiments, we first construct yearly rolling portfolios of out-performing

hedge funds with control for FWER at small targets spanning from 0.1% to 5%. We

use 20 covariates that are available and easily calculated from the hedge funds return.

The fwer+ with use of single or multiple covariates always detects non-empty group of

out-performing funds despite of the small targets of FWER and the choice of short in-

sample (IS) periods such as 24, 36 or 48 months. We then invest in the selected funds

in the following year as OOS and roll forward till the end of 2021. The portfolios gain

statistically significant positive alphas which spans from 4% to more than 5% per annum.

We see that, the portfolios controlling for smaller target of FWER tend to gain higher

alphas, which transform to Sharpe ratio of more than 2. These results are robust to

the choice of IS periods and asset pricing models. To further examine the persistence in

the performance of the funds detected by the fwer+, we consider the choices of longer

OOS periods. We see that even with OOS of four years, the fwer+ portfolios still gain

roughly as high alpha as the choice OOS of one year. This suggests that the fwer+

helps the investors selecting truly out-performing funds based on assessing funds over a

relative short past performance. We then enhance the informativeness of the covariates

via using machine learning techniques to forecast future funds’ return and use them as

new covariates. The fwer+ portfolios with use of those new covariates are able to generate
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Sharpe ratio of more than 2.5. Finally, we construct portfolios of only a single fund who

performs best among those selected by the fwer+ in in-sample period. These portfolios

gain slightly lower alpha than those in previous exercise but perform impressively in terms

of Sharpe ratio which can reach 5.3.

Our paper thus contributes to literature in both econometrics and economics aspects.

First, it provides a powerful approach to detecting out-performers, which is in demand

not only in hedge funds context but also in many other topics in economics and finance.

Second, it shows that the performance of the genuine hedge funds detected by the new

procedure persists. By using the new method, the investors can detect hedge fund man-

agers who are able to repeat their performance.

The remains of the paper are organised as follows. Section 2 introduces our fwer+

procedure. Section 3 describes our hedge fund dataset while Section 4 discusses on

our choice of funds’ performance measure. Section 5 provides simulations to show the

performance of the fwer+. Section 6 is devoted for empirical analyses and Section 7

concludes our paper.

2. FWER and informative covariates

Suppose that we are assessing n hedge funds based on a performance metric ϕ. We

test for each fund i a hypothesis

H0 : ϕi = 0 against H1 : ϕi ̸= 0. (1)

where ϕi is the true but unknown value ϕ of the fund i, i = 1, . . . , n.

This study focuses on detecting out-performing hedge funds based on their alpha, i.e.,

the metric ϕi is alpha of the fund i, i = 1, . . . , n. We aim to detect the funds having

positive ϕ, with controlling for the probability of selecting at least one non-outperforming

fund at a predetermined target τ ∈ (0, 1). Formally, let R be number of funds selected as

out-performing funds and among them F funds actually having ϕ ≤ 0. We are attempting

to control a type I error which is defined as FWER = P(F ≥ 1) at the target τ .

Literature in detecting out-performers with controlling for FWER focuses on one-sided
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test with a composite null, and numerous testing procedures have been developed. Most

recent contributions are the procedures of Romano and Wolf (2005), Hansen (2005) and

Hsu et al. (2010). The common ground of those procedures are based on bootstrapping

with use of funds’ returns (or more generally, some relative performance variable). These

procedures suffer from the computational burden and are not using additional informa-

tion, which are informative and available alongside the tests. In picking out-performing

funds, which typically assesses funds’ performance based on short time series of return,

these approaches appear to be lack of power.

The low power issue of multiple testing procedures has been gained attention across

areas of science. Recent developments in statistics attempt to incorporate side informa-

tion to raise the power of detecting false nulls, such as the contributions of Ignatiadis

and Huber (2021) and Zhou et al. (2021). Nevertheless, the implementation of those

innovative approaches in the selecting out-performers has not been addressed. In this

study we are proposing a simple procedure to further develop the framework of Zhou

et al. (2021) to solving the low power problem of the existing approaches.1 In the follows,

we summarise the framework and subsequently propose our procedure.

2.1. The use of informative covariates in controlling FWER

Suppose we set a target of FWER at τ ∈ (0, 1) and there is a set of d informative

covariates Z1, . . . , Zd carrying the information on probability that the null of tests (1)

being true. Each Zk is a column vector (Zk
1 , . . . , Z

k
n)

′, k = 1, . . . , d. For convenience,

we denote Z = (Z1, . . . , Zd) and thus Zi means (Z1
i , . . . , Z

d
i ). For each i = 1, . . . , n,

let Pi be the random variable representing the p−value of the test (1) corresponding

to the fund i and pi be its realization. Conditional on Zi = zi, we denote the prior

probability of the null hypothesis i being true by π0(zi). We model the distribution of

Pi as a mixture of two groups in which the weights of the first and the second group is

π0(zi) and 1 − π0(zi), respectively. Let f0 and falt be the density functions of the first

1The framework of Zhou et al. (2021) is more efficient in terms of computation and has been shown
to be more powerful than that of Ignatiadis and Huber (2021).
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and second group, respectively. Formally, we have

Pi|(Zi = zi) ∼ π0(zi)f0(·) + (1− π0(zi))falt(·) (2)

Thus, the covariates Z carry their information through the π0(zi) which takes value

differently across the tests. In contrast, the f0 and falt respectively are the density

functions of those p−values under true nulls and false nulls, and they are in the same

form for all tests, i.e., not depending on i. In this model, the two density functions do

not depend on Z neither. We assume the p−value of a true null is uniformly distributed,

i.e., f0(p) = 1 ∀p.

In conventional approaches, the rejection region is determined by a common threshold

T which is fixed for all tests, i.e, a hypothesis i is rejected if and only if pi ≤ Θ. The idea

now is to determine for each hypothesis i a threshold which is a function of zi denoted

by Θ(zi), i.e., the null of hypothesis i is rejected if and only if pi ≤ Θ(zi). For this

purpose, we assume the falt(p) to be a strictly decreasing function of p and follow the

developments of Zhou et al. (2021), the mentioned threshold is defined as

Θ(zi) = f−1
alt

(
π0(zi)θ

∗

1− π0(zi)

)
(3)

where θ∗ = min
{
θ > 0 :

∑n
i=1 π0(zi)f

−1
alt

(
π0(zi)θ
1−π0(zi)

)
≤ τ

}
and f−1

alt is the inverse func-

tion of falt.

In practice, the π0(z) is modelled as a logit function which has a form of π0(zi) =

1/(1 + e−b0−b′zi), where b = (b1, . . . , bd) is the column vector of the coefficients of the d

covariates, while falt(p) is modelled as a beta distribution falt(p) = kpk−1 for k ∈ (0, 1).

The parameters b0, . . . , bd and k are estimated via an expectation and maximization

algorithm.2

2For the details of developments and algorithms, readers are referred to Zhou et al. (2021).
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2.2. Application in picking outperforming funds

As we aim to picking truly positive alpha funds, we actually need to controlling for

FWER in the group of the selected out-performing funds. In this section, we propose a

simple procedure to applying the framework of Zhou et al. (2021) to the problem.

Given a target τ ∈ (0, 1) of FWER, our procedure, namely fwer+, consists of two

steps. First, we implement FWER procedure of Zhou et al. (2021) on the population

of funds with controlling FWER at the target τ . The procedure will detect a set of

abnormal funds, say A, which includes both under- and out-performing funds. Second,

we pick from this set only a subset consisting of those funds having positive estimated

alpha, say A+. Since the probability of having at least one zero-alpha funds in A is less

than τ , this also conservatively holds for the set A+ as it is a subset of A. Assuming that

there are no under-performing funds that are very lucky and selected in A+, then the set

A+ consists of out-performing funds with FWER being controlled at the target τ . As

controlling for FWER is stringent, this assumption is likely to be valid.

As will be shown in Section 5, the fwer+ controls well for FWER at any given targets

and, when informative covariates are available, it is more powerful than existing methods.

3. Data

Our hedge fund data is collected from Lipper TASS database. Following previous

research, we impose screenings to deal with common sample biases (see, Fung and Hsieh

(2001); Bali et al. (2012); Chen et al. (2021b)). We include only US dollar-based hedge

funds in our sample to avoid duplicate funds listed in different currencies. We do not

consider funds that have not reported any data during during the study period as well as

we include both “live” and “graveyard” funds from January 1994 to account for survivor-

ship bias. To address the back-fill bias issue, we exclude the first 12 months of returns

for each fund. To control for multi-period sampling bias, we require all funds have at

least 36 months of return history. For each fund, we consider only months where the

fund’s net-of-fee return and asset under management data are available. After the above

restrictions, we end up with a sample of 5,314 funds covering the period January 1994 to
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December 2021.3

4. Performance measure

Following majority of the existing literature on hedge fund performance, we use the

seven-factor model alpha of Fung and Hsieh (2004) as our baseline performance measure

of a fund.4 For each fund i we regress

ri,t = αi + Ftβi + εi,t (4)

where ri,t is the excess return, Ft = [F 1
t , F

2
t , . . . , F

7
t ] is the 1 × 7 matrix of the seven

risk factors, βi = [β1
i , β

2
i , . . . , β

7
i ]

′ is the 7 × 1 matrix of coefficients, and εi,t is the noise

of the fund i at month t. The seven factors include an equity market factor which is

the S&P500 excess return (MKT ); the Wilshire small cap minus large cap return; the

change in the constant maturity yield of the 10-year Treasury (∆10Y ); the change in the

spread between Moody’s Baa yield and the 10-year Treasury (∆CredSpr) (i.e., credit

yield spread); and 3 trend-following factors for bonds (BDTF ), currency (FXTF ), and

commodities (CMTF ).

In Section 6.6, we additionally conduct robustness check of the fund portfolio perfor-

mance of our proposed method under the use of different multi-factor models in selecting

funds with significant alphas following previous and recent studies, such as those of Bali

et al. (2012, 2014) and Chen et al. (2023). Those include the four-factor model of Carhart

(1997), a six-factor model in which we add the two risk factors ∆10Y and ∆CredSpr into

the four-factor model of Carhart (1997), and a nine-factor model in which three more

risk factors including BDTF , FXTF and CMTF are added into the six-factor model

above. The four risk factors in the four-factor model consist of the market’s excess return

on the CRSP NYSE/Amex/NASDAQ value-weighted market portfolio, the Fama–French

small minus big factor, the high minus low factor, the momentum factor.5 We also con-

3Following hedge fund literature, e.g., Chen et al. (2023), we exclude monthly net-of-fee returns that
are below -90% or excess 300%.

4See, e.g., Kosowski et al. (2007) and Chen et al. (2017).
5We follow David Hsieh’s website to collect the seven risk factors of the Fung and Hsieh (2004) factor
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sider the proposed nine-factor model of Chen et al. (2023), which outperforms previous

multi-factor models in explaining hedge fund returns. Their multi-factor model includes

the MKT , asset growth (AGR), betting-against-beta (BAB), low-risk (LRSK), return

on assets (ROA), time-series momentum (TSMOM), ∆10Y , ∆CredSpr and the spread

between the constant maturity yield of the 10-Year Treasury bill and constant maturity

of the 3-Month Treasury bill (term spread) (TERM) factors. 6

Figure 1 depicts the distributions of hedge fund alphas under the use of the mentioned

four models via estimating their kernel density curves. We see that all curves have a peak

at some positive alpha point. This is similar to reports in hedge fund literature such as

those of Chen et al. (2023). It indicates the presence of a majority positive alpha hedge

Figure 1: Distribution of hedge fund alphas. The figure shows the kernel density estimates of
funds’ alpha with use of different factor models including four-, six-, seven-, and two nine-factor models.
We require at least 36 observations per fund and for each model we regress excess return of each individual
fund on the model’s risk factors to obtain its alpha and then estimate the kernel density of the alpha
population.

model, the one-month Treasury bill rate and four risk factors of the Carhart (1997) factor model have
been obtained from the data library of Kenneth French.

6We collect the nine risk factors of the Chen et al. (2023) factor model from the the data library of
Kenneth French, Andrew Chen’s Open Source Asset Pricing data library, AQR’s online datasets, Global
Factor Data and Federal Reserve Bank of St. Louis.
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funds under the considering factor models. Compared to Chen et al. (2023), our density

curve of Chen et al. (2023)’s nine-factor model alpha has a peak at positive point rather

than at zero due to the fact that our data includes only funds in the Lipper TASS

database, a subset of the data studied in their paper.

5. Simulation studies

In this section, we conduct a set of simulations to show: i) our proposed approach

works well in terms of controlling FWER and outperforms the existing methods in terms

of power; ii) the excellent performance of fwer+ under variants of important factors.

As presented in Section 2.1, the FWER is estimated based on a mixture model assump-

tion in which the informativeness of the covariates is conveyed via the null proportion

π0(z). Thus, the relationship between Z and the non-zero alpha is not be reflected in

the model.7 This implies that, in simulation design, the non-zero alpha component can

be freely generated and not depending on the value Z. Thus, the value of Z will be

generated in the first step. Based on these values and assumption on π0(z) we assign

the true nulls, i.e., determine which funds have zero-alpha. The remaining funds will be

assigned with non-zero alpha values from a predetermined distribution. Remark that,

the signals of being false null, i.e. the magnitude of the non-zero alphas, are transformed

to rejection rule via the estimated falt.

To estimate necessary parameters for data generating process, we use data of all

the 5,314 funds in our sample and the risk factors of our baseline model. Specifically,

we utilize the seven risk factors data which start from January 1995 to December 2021

and estimate their mean and matrix of correlation coefficients. We calculate the factor

loadings (βi) for the funds by regressing each of the 5,131 funds on the risk factors.

We design simulations to cover different scenarios in applications. We generate balanced

panel data of n funds with T observations per fund. As hedge fund literature focuses on

constructing portfolio with use of 24-, 36- and 48- month IS periods, we first consider

7This differs from other models, such as Chen et al. (2021a), where they take into count the joint
distribution of alternative hypothesis’ p−value and covariates. This way, the link between the non-zero
alpha and value of covariates is reflected in the models.
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T ∈ {24, 36, 48}.

In each iteration, we conduct 7 steps as followings.

1. We generate two covariates Z = (U, V ) from a bivariate normal distribution with

mean 0 and standard deviation of 1 and with specific correlation coefficient ρ of U

and V . We consider two cases of ρ ∈ {0, 0.5}.

2. The π0(u, v) has a logit form 1/(1 + e−b0−b1u−b2v) where the triple (b0, b1, b2) is one

of the three cases (0.5, 1, 1), (0.5, 1.5, 1.5) and (0.5, 2, 2). These three cases cover a

weak, moderate and strong relationship between covariates and the probability of

a fund being zero alpha, respectively. The choice of b0 = 0.5 is to generate a set of

simulated hypotheses with a null proportion, denoted by π0, of 60%. For non-zero

alpha funds, we generate data sets such that a half of them have positive alpha.8

Given a specific choice of π0(u, v), we determine funds having zero-alpha funds

as follows. For each fund i, we draw a random value from Bernoulli distribution

which takes value 0 with probability of π0(ui, vi). Funds with drawn values of

0 are assigned as zero-alpha funds. We assign randomly a half of the remaining

funds with alpha of α > 0 and the rests with alpha of −α where the monthly

alpha α ∈ {0.5%, 1%, 1.5%}. The choice of 0.5% is close to the third quantile of the

estimated alphas in our data sample while other values are chosen under assumption

that the true α is some value in between the third quantile and the maximum of

the estimated alphas.

3. We generate the risk factors, F s and their loadings βs from normal distributions

such that their parameters are the same as those of the real sample counterpart in

whole sample period (i.e., from January 1995 to December 2021).

4. We generate the simulated excess return of each fund via the following formula

Ri,t = αs
i + F s

tβ
s
i + εi,t (5)

8By using procedures of Storey (2002) and Barras et al. (2010) we find the estimated proportions
of zero-alpha (π0) and out-and under-performing funds (π+ and π−) are 59%, 41% and 0%. To cover
general scenarios in applications we consider π0 = 60% and π+ = π− = 20%. We additionally conduct
simulations with π+ = 40%, π− = 0% and present the results in Section IB of the Internet Appendix.
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where the noise ϵi,t is drawn independently from a normal distribution N(0, σ2) with

σ to be set at 2.2% as the median of standard deviation of error terms estimated

from the real sample fund-by-fund regressions.

5. For each fund, we then regress its simulated returns on the seven simulated factors,

F s
t , to obtain its estimated α̂ and the p−value of testing its alpha against 0.

6. We implement the StepM of Romano and Wolf (2005), Stepwise-SPA of Hsu et al.

(2010) and fwer+ procedures, controlling for FWER at predetermined targets τ ∈

(0, 1), to detect truly positive alpha funds with use of the α̂s, calculated p−values

and simulated covariates.9 We consider τ ∈ {0.1%, 1%, 2%, . . . , 20%}.

7. By comparing the simulated αs and the selected out-performing funds, we record

the family wise error (FWE) which takes value 1 if there is at least one of the funds

in the negative or zero αs groups classified as out-performers. We also calculate

the detected proportion which is the ratio of truly out-performing funds detected

by each procedure.

We repeat the steps 1 to 7 across 1000 iterations and calculate estimates of the actual

FWER as the ratio of number of times we observe FWE = 1 over 1000, i.e. the frequency

of error, and the power as average of the detected proportion recorded in the step 7 above.

5.1. A comparison to existing methods

In order to compare the performance of the fwer+ to existing procedures, the StepM

of and StepSPA, we opt a specific simulated data setting with n = 1000 funds and alpha

magnitude of non-zero alpha fund α = 1.

The performance of the procedures are presented in Figure 2 where all numbers are in

percentage. In each of the top three sub-figures, we depict the estimated actual FWER

given the targets where each curve represents a procedure. At a specific target, a proce-

dure controls well for FWER if the corresponding represented point on the curve at that

target is lying below or on the dashed 45◦ line. We see that the fwer+ and StepM pro-

cedures control well for considering FWER targets regardless the number of observations

9The detail of the StepM and StepSPA procedures under our framework is presented in Section IA
of the Internet Appendix.
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Figure 2: Performance comparison. The figure compares the fwer+ and existing procedures in-
cluding StepM of Romano and Wolf (2005) and StepSPA of Hsu et al. (2010) in terms of FWER control
(top three sub-figures) and power (bottom three sub-figures). The simulated data are balanced panels of
1000 funds with T observations per fund. From the left to the right, T takes values 24, 36 and 48. The
input covariates U, V of the fwer+ are independent.

per fund whereas the StepSPA starts to lose its controlling of FWER when the target is

higher than 15%, 10% and 5% in T = 24, 36 and 48 settings, respectively.

In terms of power, provided that the FWER is controlled well, the fwer+ always

performs better than the other two with gaps depending on the FWER target and number

of observations per fund T . For instance, at target τ = 5% and T = 36, the gaps in power

of the fwer+ compared to the StepM and StepSPA are 7.5% and 3.5%, respectively.

Those numbers are larger (smaller) for T = 48 (T = 24) case which are about 15% and

5% (1.5% and 1%), respectively.

5.2. Performance of the fwer+ under varying signals

In applications, the parameters of the input data are varying. For instance, in our

portfolio construction, which will be presented in Section 6, we need to assess funds’

performance based on a short window of 36 months. The magnitude of alpha of non-
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zero alpha funds and the informativeness level of covariates are varying across different

periods. To study impacts of these factors on performance of the fwer+, in this section

we vary the alpha of the non-zero alpha funds and the informativeness of the covariate.

As such, we fix number of funds n = 1000 and T = 36, which are close to the

representative IS sample in our baseline empirical experiment, while α is varying from

0.5% to 1.5% and the relationship between the covariates and the prior null are weak,

moderate and strong.

We report in Figure 3 the performance of the fwer+ procedure under both inde-

pendent and correlated covariates settings. The top three sub-figures show the estimated

actual FWER at the given targets whereas the bottom three sub-figures the power. From

Figure 3: Performance of the fwer+ under varying setting of signals. The figure shows
impact of signals, i.e., the magnitude of true non-zero alpha and informativeness of covariates, on the
performance of the fwer+ in terms of FWER control (top three sub-figuers) and power (bottom three
figures). The simulated data are balanced panels of n = 1000 funds where each of them has T = 36
observations. The funds population consists of around 60%, 20% and 20% zero-alpha, under- and out-
performing funds, respectively. The out-performing (under-performing) funds in population have alpha
of α (−α) which varies in {0.5%, 1.0%, 1.5%}. We consider three settings of the two covariates Z = (u, v)
including weakly, moderately and strongly informative. The covariates can be independent (solid curves)
or correlated with a correlation coefficient of 0.5 (dotted curves).
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left to right, each sub-figure represents for a setting of non-zero alpha magnitude includ-

ing 0.5%, 1% and 1.5%. In each of the top three sub-figures, the red- (green- and blue-)

solid curves present for the estimated actual FWER of the fwer+ under a setting of the

weakly (moderately and strongly) informative and independent covariates (i.e., ρ = 0).

The dotted curve of the same color as the solid one is the estimated actual FWER of the

corresponding informativeness level under the correlated covariates setting (i.e., ρ = 0.5).

It is clear that the fwer+ controls well for FWER at any given targets, regardless the

dependence of covariates, as all points of the curves are below or on the 45◦ line.

The presentations in the bottom three sub-figures are similar but representing for

the power. We observe that the stronger the informativeness of the covariates the higher

power the fwer+ gains. Moving from the left to the right sub-figures, the alpha magnitude

of the out-performing funds is increasing and the fwer+ gains higher power. This is

unsurprising as the out-performing funds are being easier to be detected. When the two

covariates are correlated, the power might be slightly lower (e.g., α = 0.5 case), or higher

(e.g., α = 1 and 1.5 cases). This indicates that the dependence among covariates does

not significantly effect the performance of the fwer+.

5.3. Performance of the fwer+ under insufficient, noisy and non-informative covariates

We have investigated performance of the fwer+ under the use of two covariates Z =

(U, V ). Often, in real applications we do not know how many covariates actually convey

information on the performance of funds. Consequently, it happens the case we use less

covariates than we should, or we might use the covariates that are estimated with noise

or, even worse, unrelated to the funds’ performance (i.e, non-informative covariates).

For the first scenario, we implement the fwer+ with use of only one of the two

covariates Z1 = U . For the covariates estimated with noise case, we generate two new

covariates Z∗ = (U + η, V + ζ) where η and ζ are noise drawn from normal distribution

N(0, σ2). We investigate different levels of the noise via varying the σ ∈ {0.5, 1.0, 1.5}.

Finally, for the non-informative covariate case, i.e., a covariate that is totally noise drawn

from N(0, 1) is used as a single input covariate. The performance of the fwer+ for all

mentioned scenarios are depicted in Figure 4. In this figure, we add the performance of
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the fwer+ with use of the informative covariates Z for comparison purpose.

Figure 4: Performance of the fwer+ under use of insufficient information. The figure shows
impact of using insufficient covariates, covariates containing different levels of noise and non-informative
covariate on the performance of the fwer+ in terms of FWER control (top three sub-figuers) and power
(bottom three figures). The simulated data are balanced panels of n = 1000 funds where each of them
has T = 36 observations. The funds population consists of around 60%, 20% and 20% zero-alpha, under-
and out-performing funds, respectively. The out-performing (under-performing) funds in population have
alpha of 1%. We consider three settings of the two covariates Z = (U, V ) including weakly, moderately
and strongly informative. The simulated data are generated based on Z via π0(Z). In noisy covariates
cases, instead of usingZ, the fwer+ usesZ∗ = (U+η, V+ζ) where η, ζ ∼ N(0, σ2) and σ ∈ {0.5, 1.0, 1.5}.
In insufficient covariates case, fwer+ uses only Z1 = U while in the non-informative case it uses only one
covariate which is a noise drawn from N(0, 1) without any connection to π0(Z). We include performance
of fwer+ with use of Z for comparison purpose.

We see that in all scenarios, the FWER is controlled well at all considering targets.

This is an excellent property of the fwer+. The non-informative case implies that it

is safe, in terms of controlling FWER, to implement the fwer+ even if we wrongly

include an unrelated covariate. Unsurprisingly, in terms of power, the fwer+ performs

best when we use the truly and sufficiently information while it is least powerful in case

the covariate is irrelevant or non-informative. The power of the fwer+ with use of the

covariates estimated with noise lies in between the two extreme cases and decreases with

respect to the level of the noise, i.e., the magnitude of σ. This also implies that, adding
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into a given informative covariates set an non-informative one might damage the power

of the fwer+.

5.4. Performance of the fwer+ under varying of sample size and observations

Hitherto, we have investigated the performance of the fwer+ under different scenarios

of the informative covariates as well as the strength of the signals of the out-performing

funds. In this section, we further investigate the impact of sample size, i.e., number

of funds in sample, and number of observations per fund on the performance of the

procedure.

As such, we consider balanced panel data with varying the number of funds n and the

number of observations per fund T . As the IS horizons for portfolio selection in hedge

fund literature are typically 24 or 36 months we consider T = 24, and 36. We additionally

experiment with much longer time series of T = 90, which is also the median number of

observations per fund in our whole sample data. The n is also varying to cover all cases

of our application in empirical experiments which spreads from around 500 to 2000. We

also add a case n = 5000 which is close to our whole sample size. For the interest of space,

in this set of simulations, we present results for data generated under the independent

and weakly informative covariates and with α = 1 setting.10 The results are depicted in

Figure 5.

In sub-figures of the Figure 5, the number of observations per fund is increasing from

left to right. In each sub-figure, we present the results corresponding to different setting

in number of funds, n = 500, 1000, 2000 and 5000. From the top three sub-figures, we

again witness the excellent performance of the fwer+ in terms of FWER control. It is

clear from the bottom three sub-figures that, the power gains are higher for the data with

longer time series (i.e., larger T ). This is consistent with the fact that the out-performing

funds are easier to be detected if they outperform in a longer period. Interestingly, the

fwer+ is more powerful when the sample size is smaller. This is a good property since

the procedure can be applied in a wider problems both with small and large number of

10Our conclusions are robust to other settings such as dependent and moderately and strongly infor-
mative covariates and the results are available upon request.
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Figure 5: Varying sample size and number of observations. The figure presents the performance
of the fwer+ under varying sample size (n) and number of observations per fund (T ). The simulation data
are balanced panels with T observations per fund under weakly informative and independent covariates.

hypotheses.

In conclusion, the simulations show the excellent performance of the fwer+ in terms of

controlling for the FWER in various scenarios of data. We witness the higher power of the

proposed procedure when we have one of the followings: i) the stronger the relationship

between the covariates and the prior null; ii) the larger magnitude of out-performing

funds’ alpha; iii) the more sufficient set of informative covariates; iv) the out-performing

funds do well in a longer period (larger T ); and v) the smaller number of funds in the

population. In Section IB of the Internet Appendix, we show that our conclusions are

robust to alternative setting of the out-performing funds proportion.

6. Empirical analysis

In this section, we use the fwer+ procedure to detect out-performing funds based

on past short IS performance and invest in those detected funds in a rolling forward

fashion. We describe the covariates that we are studying, the formation of our fwer+-
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based portfolios and show their performance in various choice of IS horizons and models

that we use to assessing the performance of funds.

6.1. Covariates

As hedge fund data reveal little information on funds’ holdings, we focus on the

covariates that are calculated based on excess return of the funds. Since we are assessing

the performance of a fund via testing its adjusted return - the alpha, we include covariates

that are potentially adding information alongside the alpha itself. There exists a number

of such side information that have been shown to be linked with the performance of hedge

funds.

First, Titman and Tiu (2011) regress individual hedge fund returns on a group of risk

factors and find that funds with low R-squares gain higher alpha. The authors further

document that those low R-square funds charge higher incentive and management fees.

Thus, the R-square of the funds is not only conveying the fund’s managerial skill but also

some other fund’s characteristics. We use the R-square of the considering factor model

as a covariate.

Second, as documented in Boyson (2008), funds’ performance is more consistent

among the younger and smaller funds. As investors’ flows chase funds outperforming

in the past, funds become larger and more passive. Thus, the size, i.e., the asset under

management (AUM) of funds have a link with the funds’ performance, and is chosen as

one of our covariates.11

Third, Khandani and Lo (2011) argue that fund’s excess return auto-correlation can

measure the illiquidity in hedge funds and find a significant link between the auto-

correlation of a fund and its expected return. Thus we consider as our covariates the

first, second and third degrees of auto-correlation coefficients, which are denoted by

ACF1, ACF2 and ACF3 respectively, of the fund’s past 12-, 24- and 36-month excess

return. These make up nine covariates and constitute our “persistent covariates” group.

Last, we study the risk measures based on fund’s excess return as they are potentially

11In our experiment, we follow literature to use the logarithm of fund’s AUM instead of the AUM
itself.
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informative. For example, Liang and Park (2007) document that downside risk measures

incorporating higher moments help explain the cross-sectional variation of hedge fund

performance and have predictive power. Wu et al. (2021) also find that the kurtosis

of the excess return is an important variable in forecasting future hedge fund return.

Thereby, we study risk metrics that consist of the variance (total volatility), kurtosis and

skewness the fund’s excess return over the past 12-, 24- and 36-month periods. These

make up nine covariates and form our “moment covariates” group.

6.2. Portfolios of out-performing funds

In this section, we use the fwer+ to construct portfolios of hedge funds based on as-

sessing their short-term performance over a past period. We investigate OOS performance

of the fwer+ portfolios under various FWER target τ ∈ (0, 1).

We first describe our baseline portfolios. At the end of each year from 1997, we

use most recent three years data up to that point of time as the IS period to calculate

needed information. Specifically, we assess funds based on alpha of the 7-factor model and

conduct for each fund the test of its alpha against zero, calculate p−value and estimate

the mentioned covariates with use of only the data in IS period. A fund is eligible if it

has returns data for all months of the IS period and the data of all considering covariates

at the portfolio constructing time.12 We implement the fwer+ to picking out-performing

funds with control for FWER at the given target τ . We then invest equally weighted in

those selected funds in the following year. The performance of the portfolio in this OOS

year is recorded. If there are no funds selected, we invest on bond to earn a return at

the interest rate. When a selected fund stops reporting its returns during the OOS year,

we redistribute fund equally into the remaining funds in the portfolio.13 Our portfolios

12We additionally conduct exercises where we restrict to consider only the funds that have at least
5 million USD in AUM and find that our empirical conclusions remain unchanged. For the interest of
space, the results are presented in Appendix A.

13The IS horizon, which is used to estimate alpha (and covariates), could be 24 months as in Chen
et al. (2017) and Kosowski et al. (2007) or 36 month as in Cumming et al. (2012). The OOS period is
also varying in literature, Chen et al. (2017) use 3, 6, 9, 12, 24 and 36 months while Kosowski et al.
(2007) use 12 months. Practically, hedge fund is a long term investment vehicle and there is usually
a lock-up period which is varying up to one year depending on funds. Thus, in this study we use the
holding period of at least one year.
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are rolling forward yearly. The first OOS period is the year 1998, which we invest in the

funds selected based on the data in the IS period from January 1995 to December 1997.

The final OOS period is the year 2021, which we invest in the funds selected based on

using data from January 2018 to December 2020. Thus, each of our portfolios has OOS

returns spanning over 24 years, from January 1998 to December 2021.

To further study the empirical performance of the fwer+, we construct portfolios

that control for FWER at different targets τ ∈ {0.01%, 1%, 5%}. The input p−value is

calculated with use of heteroskedasticity and auto-correlation consistent (HAC) correction

of Newey and West (1987).14

As benchmarks, we conduct two equally weighted portfolios as followings. At the end

of each year from 1997, the first (second) equally weighted portfolio, denoted by EW

(EW+), simply selects all funds that are eligible (eligible and having positive estimated

alpha) in the IS period to invest with equal weights in the following year. We repeat

yearly until the end of 2020 to have a set of funds to invest in the year 2021.

As the numbers of covariates in the persistent and moment groups are large, we

construct representative covariates that are the first principal component (PC1) of each

group.15 We thus have four covariates and construct our fwer+ portfolios with use each

of the four. Their OOS performance metrics are reported in panels A to D of Table 1. The

metrics include annualized alpha as well as its HAC correction t−statistics and p−value,

annualized excess return and Sharpe ratio. As a measurement of empirical power, we

report the average, minimum, maximum and standard deviation of the number of out-

performing funds detected by the fwer+.

14For the purpose of selecting out-perorming funds with low FWER targets, bootstrapped p−value
has a limitation since the p−value is lower bounded at 1/(B + 1) where B is number of bootstrapped
iterations. Consequently, the highly out-performing funds with truly smaller p−value lose their advantage
to be selected and empty portfolios are generated as a result. We therefore use p−value calculated from
t−score with HAC standard error correction. In small sample size time series, the HAC correction might
be biased as documented in Boudoukh et al. (2022) and Muller (2014). We further conduct experiments
based on p−value calculated without using HAC correction and report the results in Section ID of the
Internet Appendix. We see that the performances of portfolios are better and our main conclusions are
even stronger.

15We report comprehensively the OOS performance of the fwer+ portfolios with use of each of
individual covariates in Tables I and II in Section IC of the Internet Appendix. We see that portfolios
with use of individual covariates in the same group perform similarly. This suggests the use of PC1s as
the representative covariates.
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As our first observation, the fwer+ detects non-empty group of out-performing funds

in all 24 times of portfolio constructions even when controlling for FWER at 0.01%,

which is very low target. This reflects the superior power of the fwer+ procedure and

thus it allows investors picking funds with high confidence, i.e., with very low error. More

importantly, all portfolios with use one of the considering covariates gain psotive abnormal

alpha from around 4.2% to 5.3% in OOS period which are statistically significant with

t−statistics varying from around 6 to 8. Of the four considering covariates, the PC1 of

the persistent group performs best followed by others which are somewhat similar. It is

clear that portfolios which control for a lower FWER target tend to perform better and

can gain a Sharpe ratio of more than 2.

Next, we construct our fwer+ portfolios with use of multiple covariates. As such,

Table 1: OOS performance of fwer+ portfolios. Panels A to D of the table report OOS per-
formance metrics of the fwer+ portfolios with use each of R-square, AUM, and PC1s of moment and
persistent group as the sole input covariate. The performance metrics include annualized alpha as well as
its t−statistic and p−value, excess return and Sharpe ratio and summary on number of out-performing
funds detected by fwer+. Panel E reports these metrics of the fwer+ portfolio with use of all four men-
tioned covariates whereas panel F the performance metrics of the equally weighted (EW ) and equally
weighted plus (EW+) portfolios.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of detected funds
Average Min Max Std

Panel A: fwer+ with use of R-square as the covariate
0.01 4.98 7.5 0.00 5.42 2.17 16 4 25 6
1.00 4.44 7.2 0.00 4.94 1.59 33 10 55 13
5.00 4.45 6.8 0.00 4.95 1.58 47 14 88 20
Panel B: fwer+ with AUM as the covariate
0.01 4.87 7.2 0.00 5.33 2.09 16 4 25 7
1.00 4.33 6.9 0.00 4.82 1.55 35 8 64 15
5.00 4.25 6.6 0.00 4.80 1.48 49 14 95 23
Panel C: fwer+ with use of PC1 of moment group as the covariate
0.01 4.85 7.0 0.00 5.26 2.03 16 4 29 7
1.00 4.48 7.4 0.00 4.99 1.63 34 10 65 15
5.00 4.21 6.5 0.00 4.75 1.53 49 14 97 22
Panel D: fwer+ with use of PC1 of persistent group as the covariate
0.01 5.27 8.4 0.00 5.64 2.38 15 4 24 6
1.00 4.60 7.5 0.00 5.10 1.69 33 10 56 13
5.00 4.41 6.9 0.00 4.88 1.59 46 15 84 19
Panel E: fwer+ with use of the R-square, AUM and PC1s of the two groups as the covariates
0.01 5.12 8.2 0.00 5.47 2.32 17 4 31 7
1.00 4.47 7.2 0.00 4.97 1.62 37 10 69 16
5.00 4.10 6.1 0.00 4.66 1.44 52 14 104 25
Panel F: equally weighted portfolios
EW 2.58 2.9 0.00 4.65 0.72 1067 350 1570 361
EW+ 3.00 3.7 0.00 4.77 0.80 761 273 1418 324
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we use the R-square, AUM and the two PC1s of the persistent and moment groups as

the four input covariates. As shown in Panel E of Table 1, those portfolios gain higher

power than those with use of a sole underlying covariate. This is consistent with the fact

shown in our simulation, that is, the more input informative covariates we use the higher

power the fwer+. The OOS performance of these portfolios is roughly at the average

performance of the portfolios based on each of the four underlying covariates. The results

suggest that using more covariates does not necessarily imply a higher alpha. This is not

implausible because the fwer+ is more powerful with more covariates and it might select

some more smaller truly positive alpha funds.

As benchmarks, we report the performance of the equally weighted portfolios in panel

F of the same table. We see that all the considering fwer+ portfolios outperform the

equally weighted ones. It is also noted that, the equally weighted portfolio does not select

all funds but ones that pass the screening based on the number of observations, and the

equally weighted plus one further requires funds having positive estimated alpha in the

IS period. Thus it is not surprised that those portfolios also gain significantly positive

alpha.

Overall, the fwer+ portfolios perform well with all of the considering covariates. The

fwer+ shows its power in detecting outperforming funds even when we control for a very

small error. The selected funds perform persistently in the OOS period and those selected

with lower FWER targets tend to perform better on average.

6.3. Persistent analysis

As documented in Section 6.2, the performance of the funds selected by fwer+ is

persistent at least over the rolling OOS of one year. In this section, we provide further

evidence on this advantage of the fwer+ portfolios. Thereby, we examine the performance

of those funds selected by the fwer+ over longer OOS horizons. As such, we implement

the fwer+ every m years and we hold the detected funds over m years where m = 2, 3

and 4. For the interest of space, we report in Table 2 the performance of only the fwer+

portfolios with use of R-square, AUM, and PC1s of moment and persistent group as the

four input covariates. In long horizons, the attrition rate becomes important since the
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selected funds might not survive throughout the holding periods, leading to potential

empty portfolios. We thus report the summary of monthly portfolio size rather than that

of the number of funds selected by the fwer+ as in previous discussions. We see that

all considering portfolios are non-empty throughout the holding periods even with the

holding horizon of four years.

Table 2: Performance of fwer+ in various OOS horizons. The table reports performance
metrics of the fwer+ portfolios with use of R-square, AUM, and PC1s of moment and persistent group
as the four input covariate with different OOS holding horizons. In OOS horizon of 2 (3 and 4) years,
outperforming funds are selected by fwer+ every 2 (3 and 4) years and invested in the following 2 (3
and 4) years. The performance metrics include annualized alpha as well as its t−statistic and p−value,
excess return, Sharpe ratio and summary on monthly portfolio size. Panels A, B, and C report these
metrics for portfolios with holding horizons of 2, 3, and 4 years, respectively.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Portfolio Size

Average Min Max Std
Panel A: 2-year OOS horizon
0.01 5.36 8.0 0.00 5.71 2.13 17 3 31 7
1.00 4.60 6.9 0.00 5.22 1.66 36 9 69 16
5.00 4.55 6.8 0.00 5.32 1.52 52 17 104 24
Panel B: 3-year OOS horizon
0.01 4.95 7.8 0.00 5.40 2.03 16 2 31 7
1.00 3.55 5.3 0.00 4.30 1.24 39 7 60 17
5.00 3.38 5.4 0.00 4.16 1.19 55 15 98 25
Panel C: 4-year OOS horizon
0.01 4.99 8.2 0.00 5.27 2.07 17 1 31 9
1.00 4.31 7.2 0.00 4.85 1.63 33 3 69 19
5.00 4.27 6.9 0.00 4.96 1.50 45 9 104 28

In terms of alpha and Sharpe ratio, we see that the fwer+ portfolios with 2- and

4-year holding horizons perform as well as those with one year holding whereas those of

3-year holding horizon are slightly worse. Given the use of only 3-year IS periods, the

persistence in performance of the 4-year holding horizon portfolios is impressive.

Holding for a longer period also implies a less re-balanced cost. However, investors

also face a risk of funds’ attrition which might lead to a low diverse portfolio. As shown

in summary of portfolio size columns, the minimum portfolio size is reducing with respect

to the holding horizon. Nevertheless, in this particular case, the investors will not face

any diversification problem if they set a target of FWER at 5%.

6.4. Sub-sample analysis

In this section, we further investigate the performance of the fwer+ portfolios in sub-

periods. We partition the whole OOS period, which spans from 1998 to 2021, into five
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non-overlapping sub-periods: 1998–2001, 2002–2006, 2007–2011, 2012–2016, and 2017–

2021. Of those sub-periods, only the first one lasts for four years, others are five-year

periods. We calculate the performance metrics of the portfolios in each sub-period and

report them in each panel of Table 3.

Table 3: OOS performance of fwer+ portfolios in sub-samples. Table report OOS performance
metrics of the fwer+ portfolios with use of R-square, AUM, and PC1s of moment and persistent group
as the four input covariate in five non-overlapping sub-periods. For each sub-period we construct the
equally weighted (EW ) and equally weighted plus (EW+) portfolios as benchmarks. The performance
metrics include annualized alpha as well as its t−statistic and p−value, excess return, Sharpe ratio and
summary on monthly portfolio size. We report in each panel the performance of the portfolios in the
sub-period shown in its title.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Portfolio size

Average Min Max Std
Panel A: Period 1998–2001
0.01 4.96 3.9 0.00 3.75 0.97 22 18 30 4
1.00 5.01 4.1 0.00 3.81 1.00 50 40 60 8
5.00 5.10 4.3 0.00 3.95 0.96 67 55 84 11
EW 6.01 2.9 0.01 4.63 0.59 526 333 724 133
EW+ 5.54 3.3 0.00 4.24 0.61 401 258 571 111
Panel B: Period 2002–2006
0.01 4.83 5.6 0.00 6.59 3.65 18 8 27 7
1.00 4.81 6.6 0.00 6.73 3.99 48 31 69 14
5.00 5.17 6.7 0.00 6.96 4.07 72 46 106 24
EW 3.90 3.2 0.00 7.25 1.49 1056 766 1364 188
EW+ 3.99 3.0 0.00 7.57 1.56 824 676 977 110
Panel C: Period 2007–2011
0.01 2.86 1.9 0.06 2.70 1.10 10 2 22 7
1.00 2.63 1.7 0.10 1.87 0.44 26 7 61 18
5.00 2.44 1.6 0.12 1.60 0.35 41 10 87 27
EW 1.82 1.0 0.32 0.39 0.09 1393 1191 1544 78
EW+ 2.20 1.2 0.24 0.72 0.13 1125 927 1399 115
Panel D: Period 2012–2016
0.01 7.07 6.3 0.00 8.18 4.06 14 7 20 4
1.00 6.58 7.7 0.00 7.99 4.86 35 27 41 4
5.00 6.81 7.9 0.00 8.40 4.95 51 35 61 9
EW 0.46 0.4 0.67 5.18 1.23 1135 924 1422 126
EW+ 1.84 1.7 0.09 5.49 1.56 774 616 1028 117
Panel E: Period 2017–2021
0.01 4.69 6.0 0.00 5.17 3.30 18 7 27 6
1.00 3.29 3.3 0.00 4.12 1.33 24 10 36 6
5.00 3.08 2.9 0.01 3.88 1.35 28 12 42 8
EW -0.52 -0.4 0.70 5.95 0.82 763 540 962 120
EW+ 0.83 0.7 0.48 5.87 1.04 410 267 561 96

The table shows that the fwer+ portfolios gain positive alpha and Sharpe ratio in all

sub-periods. Except the period 2007–2011, which covers the global financial crisis 2007–

2008, the portfolios’ alphas are statistically significant at all considering FWER targets.

Compared to equally weighted portfolios, the fwer+ portfolios gain higher alpha for four

25



over five sub-periods. In only the first sub-period, the fwer+ portfolios gain lower alpha

but their t−statistic are higher.16 Also, the fwer+ portfolios always have a higher Sharpe

ratio than the equally weighted portfolios regardless the considered FWER targets and

sub-periods.

The fwer+ portfolios perform best during the period 2012–2016 with alphas roughly

7% and Sharpe ratios spanning from 4 to roughly 5. The most recent sub-period of our

sample, the fwer+ portfolios perform as well as the average of the whole sample reported

in previous section and the Sharpe ratio can reach 3.3.

6.5. Boosting the informativeness of covariates

Hitherto, we have utilized only the informativeness of the covariates’ variation. Yet,

the covariates are likely containing noise and thus their informativeness is affected. In this

section, we show that the performance of fwer+ portfolios can be improved via boosting

the informativeness of the covariates. The main idea is to generating new covariates that

target for future funds’ expected returns. Thereby, we first use machine learning models

to predict future return of funds and then we use the predicted returns as covariates.

More specifically, we are considering four well-known machine learning models including

the least absolute shrinkage and selection operator (LASSO, see Tibshirani 1996), random

forest (RF, see Breiman 2001 ), stochastic gradient boosting (GB, see Friedman 2002)

and deep neural network (DNN, see LeCun et al. 2015).

Formally, the relationship of the funds’ cumulative future return during period t +

1, . . . , t+ h and the information of covariates at the end of month t can be modelled as

R̃i,t→t+h = ft(Xi,t) + ϵ̃i,t (6)

where R̃i,t→t+h is cumulative return of fund i from month t+1 to t+h, Xi,t is the realized

covariates of the fund i measured at the end of month t, the function ft describes the

relationship of the Xi,t and the future accumulated return over h months R̃i,t→t+h whereas

16It is worth to note that, the fwer+ aims to select highly significant alpha funds, which are reflected
via the significant of the tests, i.e., the t−statistics.
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ϵ̃i,t is the noise.

Consistent with the choice of our IS horizon and rolling window, to predict the return

of year corresponding to period from month t + 1 to t + 12 for some t, we use data at

the end of each previous three years until the end of month t to train the model (6)

and use it to predict future return. That is, we train the model by using target variable

R̃i,k→k+12 and features Xi,k with k = t− 36, t− 24 and t− 12 across funds considered in

the IS period. We fit into training model the data of features Xi,t at the end of month t

to acquire the predicting accumulated future return for period t + 1 to t + 12.17 As our

AUM is available from December 1997, our first predicted returns is for the year 1999.

This predicted return is calculated from data up to December 1998 and used as the input

covariates of the fwer+ to select funds invested in the year 1999. We rolling forward and

re-balance the portfolios yearly in the same fashion as the fwer+ portfolios described in

previous section.

Table 4 reports the OOS performance of the fwer+ portfolios with use of the pre-

dicted return of each considering machine learning model as a covariate. We see that the

Table 4: OOS performance of fwer+ portfolios with use of new covariates. Panel A (B, C
and D) reports OOS annualized alpha as well as its t−statistic and p−value, excess return, Sharpe ratios
and summary on number of out-performing funds selected by the fwer+ with use of funds’ future return
predicted by LASSO (GB, RF and DNN) model at given FWER targets τ .

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of detected funds
Average Min Max Std

Panel A: fwer+ with use of future return predicted by the LASSO model as the sole covariate
0.01 5.42 9.3 0.00 5.83 2.79 15 4 25 7
1.00 4.50 7.6 0.00 5.04 1.73 33 10 59 14
5.00 4.40 7.0 0.00 4.96 1.69 46 14 86 20
Panel B: fwer+ with use of future return predicted by the GB model as the sole covariate
0.01 5.18 8.6 0.00 5.56 2.64 14 0 25 7
1.00 4.68 8.4 0.00 5.21 1.85 30 1 56 15
5.00 4.35 7.1 0.00 4.88 1.70 42 1 87 23
Panel C: fwer+ with use of future return predicted by the RF model as the sole covariate
0.01 5.42 9.4 0.00 5.87 2.52 15 4 25 7
1.00 4.87 7.0 0.00 5.66 1.38 30 5 56 14
5.00 4.52 6.2 0.00 5.28 1.31 43 7 89 21
Panel D: fwer+ with use of future return predicted by the DNN model as the sole covariate
0.01 5.37 9.3 0.00 5.78 2.72 15 4 24 6
1.00 4.84 9.2 0.00 5.39 1.96 32 10 55 14
5.00 4.54 7.4 0.00 5.12 1.76 45 14 87 20

17We follow Wu et al. (2021) in tuning the hyperparameters of the models.
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performances of the portfolios are generally better than the portfolios with four covari-

ates presented in previous section. The portfolios’ alpha range from 4.4% to 5.4% and

Sharpe ratio from 1.31 to 2.79. On average across the considering FWER targets, the

DNN model seems to be the best with an annualized alpha varying from 4.54% to 5.37%

and an annualized Sharpe ratio that can reach 2.7. These numbers are generally higher

than those of the fwer+ portfolio with use of the four covariates reported in Table 1.

This supports for benefit of using advanced machine learning techniques in forecasting

hedge funds’ return.

6.6. Alternative choices of benchmarks

In this section, we assess whether the performance of the fwer+ portfolios is robust

to alternative benchmark multi-factor models used in fund performance literature (see,

e.g., Bali et al., 2012, 2014; Chen et al., 2023). More specifically, we are considering

three alternative factor models including the four-factor model of Carhart (1997), a six-

factor and a nine-factor model, as well as the nine-factor model of (Chen et al., 2023) as

described in Section 4.

Table 5: Performance under alternative benchmarks. The table reports the OOS performance of
the fwer+ portfolios constructed by selecting truly positive alpha under alternative benchmarks. The
fwer+ uses all of the considering four covariates (the R-square, AUM, and two PC1s of the persistent
and moment groups) as inputs. Panel A (B, C and D) presents annualized alpha of corresponding factor
model as well as its t−statistic and p−value, excess return, Sharpe ratios and summary on the number
of funds selected by the fwer+ under the use of the four- (six- and traditional nine- and Chen et al.
(2023)’s nine-) factor model as the benchmark.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of selected funds

Average Min Max Std #empty
Panel A: four-factor model
0.01 5.26 7.7 0.00 5.75 2.61 14 4 28 7
1.00 5.16 7.1 0.00 6.07 2.26 28 7 60 13
5.00 4.61 5.4 0.00 5.58 1.81 37 12 81 18
Panel B: six-factor model
0.01 5.43 8.5 0.00 5.85 2.62 16 4 32 7
1.00 4.73 6.4 0.00 5.42 1.84 31 9 57 13
5.00 4.62 6.5 0.00 5.34 1.73 41 13 75 17
Panel C: traditional nine-factor model
0.01 5.26 7.9 0.00 5.63 2.23 14 3 27 7
1.00 4.88 8.2 0.00 5.42 2.01 30 8 61 13
5.00 4.15 6.4 0.00 4.83 1.54 42 12 79 18
Panel D: nine-factor model of Chen et al. (2023)
0.01 4.01 3.6 0.00 4.77 1.78 5 0 19 5 3
1.00 3.18 2.8 0.01 5.29 1.29 10 0 40 11 1
5.00 3.15 2.8 0.01 4.17 1.11 16 0 60 17 1

28



For each of the alternative benchmarks, we repeat the exercises presented in previous

sections. For the interest of space, we present in Table 5 the performance of the fwer+

portfolios with use of the R-square of the considering model, AUM, and two PC1s of

the moment and consistent groups. Overall, the OOS alphas of the fwer+ portfolios are

varying across the benchmark but all are statistically significantly positive. We see that,

the fwer+ portfolios under the four- and six-factor models gain highest annualized alpha

which varie from 4.61% to 5.43%. However, as the alphas are of different factor models,

it is not appropriate to compare models based on this metric. Interestingly, comparing

all considered models, including the seven-factor presented in Panel E of the Table 1,

the highest Sharpe ratio is gained under the use of the four-factor model. Overall, all

of our conclusions on the power of fwer+ as well as the ability in detecting truly out-

performing hedge funds remain. As the fwer+ does not detect any truly positive alpha

funds for some certain years when the Chen et al. (2023)’s nine-factor model is used, we

report number of times (over 24 times) when this happens in the “#empty” column. For

instance, there are one time the fwer+ does not detect any positive alpha funds when

controlling for FWER at 1%. Generally, under the use of the Chen et al. (2023)’s nine-

factor model the fwer+ finds only a third of positive alpha funds compared to when use

other models. This supports for the that the model explains better the cross-sectional

return of hedge funds, thus there are fewer funds that having abnormal alpha.

We have assessed the performance of hedge funds based on past 36-month IS periods.

As robustness checks of for this choice of the IS horizon, we additionally conduct experi-

ments with use of 24- and 48-month IS periods. For the interest of space, the results are

presented in Appendix B. Generally, with use of 24-month IS periods, the alphas of the

fwer+ portfolios are slightly higher than those reported for 36-month IS case though the

Sharpe ratios are slightly lower. In contrast, the Sharpe ratios of the 48-month case are

comparable to the baseline while the alphas are slightly lower.

6.7. Portfolios of the best out-performing hedge fund

We have conducted portfolios of hedge funds with control for FWER at certain targets

under consideration of various performance assessment settings. We have witnessed that
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the fwer+ is being able to detect out-performing funds based on utilizing short IS data

windows. In this section, we further construct the portfolios consisting of only a single

fund selected by the fwer+. Given a FWER target τ , as the FWER of the group of

funds detected by the fwer+ is controlled at the target τ , it holds so for any subgroup

of the detected funds. Instead of investing on all funds selected by the fwer+, our new

single-fund portfolio is established by investing only the fund selected by the fwer+ that

performs best in the IS period, i.e., one that has highest t−score among those selected

by the fwer+.

As our fwer+ portfolios under the use of traditional factor models are non-empty

all the time regardless the considering FWER targets, and as the portfolio with higher

FWER target contains portfolios with lower targets, the choices of the considering FWER

targets (0.1%,1% and 5%) will not effect on the best fund. We see that, the best funds

are also unchanged under the choices of the considering covariates. The choice of the

factor model affects the best funds, however. We thus report in Panel A of Table 6 the

performance of the those portfolios without showing the FWER target and covariates.

We report results for all considering factor models. We see that all portfolios performs

impressive, especially in terms of Sharpe ratio with the best reaching 5.3. In terms of

alpha, the best fund portfolios perform as good as those fwer+ with use of all four

covariates at FWER target 0.1% reported in 1 and 5. On the downside, the portfolios

are empty for 4 to 11 months over 288 months of the investing period.

In contrast, the fwer+ portfolios under the use of Chen et al. (2023)’s nine-factor

model are empty for number of years depending on the FWER targets. We thus report

similar metrics for those portfolios in Panel B of the same table. At target of 1%, the

portfolio gain higher return and alpha compared to the use of the traditional factor

models. However, the Sharpe ratio is lower and the portfolio is empty during 18 over 288

months.
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Table 6: Performance under alternative benchmarks. The table reports the OOS performance of
the portfolio that consists of the fund performed best in IS period among those selected by the fwer+.
Panel A presents annualized alpha of corresponding factor model as well as its t−statistic and p−value,
excess return, Sharpe ratios and empty rate of the portfolios under the use of traditional factor models.
Panel B presents similar metrics under the use of the Chen et al. (2023)’s nine-factor model.

Panel A: traditional factor models
Model Alpha (%) t−statistic p−value Return (%) Sharpe Ratio Empty rate (%)
4 factors 5.16 14.8 0.00 5.36 4.86 11/288
6 factors 5.08 15.2 0.00 5.27 5.33 7/288
7 factors 5.01 10.6 0.00 5.32 3.50 4/288
9 factors 5.16 15.0 0.00 5.37 5.31 7/288
Panel B: nine-factor model of Chen et al. (2023)
τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio Empty rate (%)
0.01 4.70 4.0 0.00 5.10 2.30 42/288
1.00 5.56 4.5 0.00 5.85 1.84 18/288
5.00 5.56 4.5 0.00 5.85 1.84 18/288

7. Concluding discussion

We have introduced the fwer+ to control FWER in picking out-performers. The

procedure utilizes multiple side information in estimating the FWER. Via simulations we

show that when informative covariates are available the method gains significant higher

power than existing methods which are not using the covariates.

Empirical experiments in hedge funds context show that the method is so powerful

that it can detect out-performing funds even with a very low target of FWER. The

portfolios of the detected funds are able to generate statistically significantly positive

alpha and the performance of those funds are persistent for a long period. This is robust

to various choices of IS horizons and asset pricing models. All experiments suggest a

powerful and promising tool for investors who desire to picking hedge funds with high

confidence.

The new method has a high potential in applications, especially for ones that require

a low level of error. In similar applications to our study, the method can be used in

picking out-performing mutual fund, bond fund and trading strategies. It can be also

used to guard the data snooping in predictive model and factor selection.
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Appendix A. Empirical results with restriction on AUM

In this section we present the performance of the fwer+ portfolios when we restrict

to considering only funds having at least 5 millions of AUM at the time we construct

the portfolios. Table A reports OOS performance of the fwer+ portfolios with use of

the R-square, AUM, and two PC1s of the moment and persistent groups as solely input

covariate (Panels A to D) and four input covariates (Panel E). As benchmarks, we also

report in Panel F the performance of the equally weighted portfolios which simply select

all eligible funds in IS period (EW ) and subset of those additionally having positive

estimated IS alpha (EW+). Generally, the performances of the portfolios remain similar

to those with only requirement on the availability of the AUM reported in the Table 1 of

the main manuscript.

Table A: OOS performance of fwer+ portfolios under restrictions on AUM. Panels A to D
of the table report OOS performance metrics of the fwer+ portfolios with use each of R-square, AUM,
and PC1s of moment and persistent group as the sole input covariate. The performance metrics include
annualized alpha as well as its t−statistic and p−value, excess return, Sharpe ratio and summary on
number of out-performing funds detected by the fwer+ procedure. Panel E reports these metrics of the
fwer+ portfolio with use of all four mentioned covariates whereas panel F the performance metrics of
the equally weighted (EW ) and equally weighted plus (EW+) portfolios.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of detected funds
Average Min Max Std

Panel A: fwer+ with use of R-square as the covariate
0.01 4.94 7.2 0.00 5.35 2.09 16 4 26 7
1.00 4.39 7.3 0.00 4.88 1.58 34 9 54 13
5.00 4.38 6.8 0.00 4.90 1.56 47 15 85 19
Panel B: fwer+ with AUM as the covariate
0.01 4.80 6.8 0.00 5.23 2.00 16 4 26 7
1.00 4.37 7.1 0.00 4.86 1.55 35 9 61 15
5.00 4.19 6.5 0.00 4.75 1.46 49 15 94 23
Panel C: fwer+ with use of PC1 of moment group as the covariate
0.01 4.78 6.7 0.00 5.15 1.96 17 4 30 7
1.00 4.54 7.7 0.00 5.03 1.66 35 9 66 15
5.00 4.30 6.7 0.00 4.86 1.53 49 15 98 22
Panel D: fwer+ with use of PC1 of persistent group as the covariate
0.01 5.21 8.1 0.00 5.56 2.29 15 4 25 6
1.00 4.54 7.3 0.00 5.03 1.65 33 9 53 13
5.00 4.37 6.9 0.00 4.83 1.57 46 14 82 19
Panel E: fwer+ with use of the R-square, AUM and PC1s of the two groups as the covariates
0.01 5.00 7.6 0.00 5.32 2.16 17 4 30 7
1.00 4.43 7.0 0.00 4.93 1.55 38 10 69 16
5.00 4.38 6.5 0.00 4.97 1.48 53 14 106 25
Panel F: equally weighted portfolios
EW 2.50 2.8 0.01 4.58 0.70 1018 336 1533 353
EW+ 2.91 3.5 0.00 4.68 0.78 739 266 1389 319
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Appendix B. Alternative choices of in-sample horizons

Literature in hedge fund performance construct portfolios based on assessing funds’

performance over a short past performance, i.e, a short IS horizon. The most common

choices are 24 and 36 months. Beside, a choice of 48 month is also considered. As

robustness checks, we repeat the discussed experiments with the choices of 24- and 48-

month IS horizons and present the OOS performance in Tables B and C, respectively.

In both cases, our conclusions on both power and performance remain as in the 36-

month IS case. On average, the fwer+ gain higher power for a longer IS period. We also

observe that the fwer+ portfolios with a longer IS period tend to gain higher Sharpe

ratio but lower alpha. Nevertheless, the differences are small.

Table B: OOS performance of fwer+ portfolios with use of 24-month IS periods. Panels A
to D of the table report OOS performance metrics of the fwer+ portfolios with use each of R-square,
AUM, and PC1s of moment and persistent group as the sole input covariate. The performance metrics
include annualized alpha as well as its t−statistic and p−value, excess return and Sharpe ratio of the
portfolios and summary on number of funds selected by fwer+. Panel E reports these metrics of the
fwer+ portfolio with use of all four mentioned covariates as inputs whereas panel F the performance
metrics of the equally weighted (EW ) and equally weighted plus (EW+) portfolios.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of selected funds
Average Min Max Std

Panel A: fwer+ with use of R-square as the covariate
0.01 5.15 6.4 0.00 5.40 1.70 9 1 18 5
1.00 4.67 5.7 0.00 5.12 1.56 21 7 47 10
5.00 3.80 4.8 0.00 4.32 1.24 30 11 72 15
Panel B: fwer+ with AUM as the covariate
0.01 5.67 6.1 0.00 5.99 1.68 10 1 20 5
1.00 4.40 5.1 0.00 4.85 1.44 22 7 52 11
5.00 3.78 4.5 0.00 4.31 1.22 31 12 79 17
Panel C: fwer+ with use of PC1 of moment group as the covariate
0.01 6.03 7.0 0.00 6.39 1.91 10 1 18 5
1.00 4.82 6.1 0.00 5.34 1.68 22 7 52 11
5.00 3.92 4.9 0.00 4.46 1.33 31 10 75 17
Panel D: fwer+ with use of PC1 of persistent group as the covariate
0.01 5.71 6.2 0.00 6.04 1.66 9 1 18 5
1.00 4.68 5.6 0.00 5.10 1.54 21 7 47 10
5.00 4.06 5.1 0.00 4.53 1.39 30 11 72 15
Panel E: fwer+ with use of the R-square, AUM and PC1s of the two groups as the covariates
0.01 5.57 7.2 0.00 5.84 1.95 10 2 20 5
1.00 4.59 5.6 0.00 5.08 1.56 24 7 56 12
5.00 3.85 4.9 0.00 4.40 1.28 34 12 79 17
Panel F: equally weighted portfolios
EW 2.85 3.2 0.00 5.00 0.78 1098 500 1570 335
EW+ 3.24 4.0 0.00 5.13 0.87 783 323 1418 313
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Table C: OOS performance of fwer+ portfolios with use of 48-month IS periods. Panels A
to D of the table report OOS performance metrics of the fwer+ portfolios with use each of R-square,
AUM, and PC1s of moment and persistent group as the sole covariate. The performance metrics include
annualized alpha as well as its t−statistic and p−value, excess return and Sharpe ratio of the portfolios
and summary on number of funds selected by fwer+. Panel E reports these metrics of the fwer+

portfolio with use of all four mentioned covariates as inputs whereas panel F the performance metrics of
the equally weighted (EW ) and equally weighted plus (EW+) portfolios.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of selected funds
Average Min Max Std

Panel A: fwer+ with use of R-square as the covariate
0.01 4.82 7.3 0.00 5.18 2.34 18 3 33 8
1.00 4.19 6.2 0.00 4.69 1.72 38 13 74 19
5.00 3.85 4.9 0.00 4.44 1.46 52 18 100 27
Panel B: fwer+ with AUM as the covariate
0.01 4.76 8.2 0.00 5.13 2.48 19 3 35 8
1.00 4.18 6.2 0.00 4.70 1.69 41 12 80 21
5.00 3.84 5.0 0.00 4.45 1.40 56 17 111 31
Panel C: fwer+ with use of PC1 of moment group as the covariate
0.01 4.73 7.0 0.00 5.09 2.12 19 2 34 8
1.00 4.34 6.0 0.00 4.86 1.68 38 4 77 20
5.00 4.11 5.4 0.00 4.73 1.56 54 8 105 30
Panel D: fwer+ with use of PC1 of persistent group as the covariate
0.01 4.92 7.6 0.00 5.29 2.38 18 3 34 8
1.00 4.20 6.1 0.00 4.71 1.70 37 13 70 19
5.00 3.99 5.1 0.00 4.59 1.50 52 15 100 27
Panel E: fwer+ with use of the R-square, AUM and PC1s of the two groups as the covariates
0.01 4.55 7.3 0.00 4.86 2.10 20 1 37 9
1.00 4.43 6.7 0.00 4.98 1.81 43 2 82 23
5.00 4.04 5.0 0.00 4.70 1.46 59 2 118 34
Panel F: equally weighted portfolios
EW 2.77 3.1 0.00 4.94 0.76 898 337 1271 283
EW+ 3.09 3.7 0.00 5.00 0.84 672 263 1153 263

37



Internet Appendix

In section IA we present the StepM and StepSPA procedures in our alpha testing

framework. Section IB presents additional simulation results in which we consider an

alternative setting on the proportion of out-performing funds. Section IC reports the

performance of the fwer+ portfolios under the use of individual covariates. Finally,

Section ID presents empirical results when the simple p−value is used instead of the one

without HAC correction.

IA. The implementation of the StepM and StepSPA procedures

In this section we present the StepM and StepSPA procedures for multiple tests where

the testing metric is the alpha of an asset pricing model. In line with frameworks of Ro-

mano and Wolf (2005) and Hansen (2005), Hsu et al. (2010) we first consider performance

of n funds and conduct for each fund i a hypothesis test:

H0 : µi ≤ 0 H1 : µi > 0 (A.1)

where µi is the expectation of a time-varying metric di,t which represents for the per-

formance of the fund i relative to a benchmark at time t, i = 1, . . . , n. The relative

performance can be expressed in a form of di,t = L0,t −Li,t where L0,t and Li,t are values

of a loss function measured at time t of the benchmark and fund i, respectively. The

choice of the loss function is flexible and depends on the goal of researchers.

For instance, in the framework of Hsu et al. (2010), where they assess the performance

of trading rules, the Li,t is set to be −1 multiplied by the return of a trading rule i in



excess of interest rate in day t. The benchmark strategy is one that earns the interest

rate, whose L0,t = 0 which is −1 multiplied by 0 (the benchmark return excess of the

interest rate). The di,t turns out to be the excess return of the strategy i and µi is its

expected return.

In our framework, the testing performance is the alpha of a fund, the choice of the

loss function will be different. Suppose we are testing the alpha of the model (4). We

consider funds surviving through periods t from 1 to T and assess their performances in

this period. As the adjusted return of a fund i is ri,t−F tβ̂i where β̂i is the estimate of βi,

we define a loss function as Li,t = −[ri,t − Ftβ̂i]. This is a natural setting as the smaller

the loss Li,t, the better the performance of the fund. The benchmark is the portfolio that

invests on the considering risk factors and thus the adjusted return is 0 and its loss is

L0,t = 0. We have that the expectation of L0,t−Li,t = ri,t−Ftβ̂i is the alpha of the fund

i. Thus, in our framework

di,t = ri,t − Ftβ̂i = α̂i + ε̂i,t (A.2)

The StepM and StepSPA procedures rely on a bootstrapped resampling where the

stationary bootstrap procedure of Politis and Romano (1994), with average length 1/q

where q ∈ (0, 1), is adopted.

First we estimate the variance ω̂2
i of di,t as in Hansen (2005). More specifically, let d̄i

be the average of di,1, . . . , di,T . Then,

ω̂2
i = γ̂i,0 + 2

T−1∑
t=1

κ(T, t)γ̂i,t (A.3)

where γ̂i,t = 1/T.
∑T−t

k=1(di,k − d̄i)(di,k+t− d̄i), t = 0, . . . , T − 1 and κ(T, t) = T−t
T

(1− q)t+

t
T
(1− q)T−t.

For each bootstrapped iteration b, a cross-sectionally and jointly bootstrapped return

of each fund i and risk factors are generated. We calculate d̄i,b =
∑T

t=1 di,t,b/T where di,t,b

is the relative performance obtained by implementing (A.2) on the bootstrapped return
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of the fund i.18

For the (studentized) StepM procedure, we calculate the variance ω̂2
i,b for the boot-

strapped differential di,t,b via using (A.3) where di,t and d̄i are replaced by di,t,b and d̄i,b,

respectively.

After B iterations, we establish a bootstrapped critical point for StepM, c∗τ,StepM , as

the (1− τ)th quantile of the bootstrapped population max
i

[(d̄i,b− d̄i)/ω̂i,b], b = 1, . . . , B.19

In the (studentized) StepSPA, we define µ̂i = d̄i.1{
√
T d̄i≤−ω̂i

√
2 log log T} where 1{·} de-

notes the indicator function, i = 1, . . . , n. and the bootstrapped critical point is defined

as c∗τ = max{cτ , 0} where cτ is the (1 − τ)th quantile of the bootstrapped population
√
Tmax

i
[(d̄i,b − d̄i + µ̂i)/ω̂i], b = 1, . . . , B.

Both the StepM and StepSPA are processed with the same steps but different in the

statistics and bootstrapped critical point. In particular, the StepSPA procedure is as

followings:

• Sort
√
T d̄i/ω̂i in a descending order.

• Select the top k funds if
√
T d̄k/ω̂k > c∗τ . If there is no hypothesis rejected then stop

the procedure. Otherwise,

1. Remove the selected funds to obtain a sub-sample. Recalculate the critical c∗τ

with use of the sub-sample, denoted by csτ .

2. The top k′ funds in the sub-sample with
√
T d̄k′/ω̂k′ > csτ are selected. If there

is no hypothesis rejected then stop the procedure. Otherwise go to step 3.

3. Repeat the steps 1 and 2 above until there is no hypothesis that can be rejected.

In the StepM procedure, the statistics
√
T d̄k/ω̂k and bootstrapped critical point c∗τ are

replaced by d̄k/ω̂k and c∗τ,StepM , both in the whole sample and sub-sample, respectively.

18We bootstrap from fund returns and risk factors as adjusted return of a fund i is changing via both
its return and the estimated βi calculated with use of the return.

19Our implementation of the StepM procedure is similar to Hsu et al. (2010) which differs from the
original procedure of Romano and Wolf (2005) in three aspects. First, they use a circular block bootstrap
while we use the stationary bootstrap. Second, they adopt data-driven algorithm in determining the block
size of bootstrap, while we use a fixed value q = 0.9 following literature. Third, they use bootstrapped
standard errors whereas we adopt HAC estimators as described in A.3. These differences might affect
the finite sample performance of the StepM performance reported in our simulations results.
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IB. Additional simulation studies

To complement our simulation studies presented in Section 5 of our main manuscript,

this section presents simulation results for a different setting of the triple (π+, π0, π
−).

More specifically, we additionally consider the case π+ = 40%, π0 = 60% and π− = 0%.

Generally, the results are very similar to the case π+ = 20%, π0 = 60% and π− = 20% and

for the interest of space, we present the main results in Figure I where 18 variant settings

are considered. These variants cover various signal settings in terms of α magnitude, the

covariate signal strength and the correlation among the covariates.

Figure I: Performance of the fwer+ under varying setting of signals under the alternative
setting. The figure shows impact of signals, i.e., the magnitude of true non-zero alpha and informative-
ness of covariates, on the performance of the fwer+ in terms of FWER control (top three sub-figuers)
and power (bottom three figures). The simulated data are balanced panel of n = 1000 funds where each
of them has T = 36 observations. The funds population consists of around 60%, 0% and 40% zero-
alpha, under- and out-performing funds, respectively. The out-performing (under-performing) funds in
population have alpha of α (−α) which varies in {0.5%, 1.0%, 1.5%}. We consider three settings of the
two covariates Z = (u, v) including weakly, moderately and strongly informative. The covariates can be
independent (solid curves) or correlated with a coefficient of 0.5 (dotted curves).
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IC. Performance of fwer+ portfolios with use of individual covariates

In this section, we present the OOS performance metrics of the fwer+ portfolios

with use of underlying individual covariates. Particularly, we present in Table I and II

the metrics corresponding to individual covariates in the persistent and moment groups,

respectively.

Table I: OOS performance of fwer+ portfolios with use of persistent covariates. The table
reports the OOS performance of fwer+ portfolios with use of individual covariates in persistent group.
Panels A to I report OOS annualized alpha as well as its Newey and West (1987) t−statistic and p−value,
excess return and Sharpe ratios and summary on size of fwer+ portfolios with use of the sole covariate
at various given FWER target τ .

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Portfolio Size

Average Min Max Std
Panel A: fwer+ with use as the covariate the ACF1 of past 12-month excess returns
0.01 5.38 8.1 0.00 5.81 2.31 15 4 25 6
1.00 4.77 7.6 0.00 5.34 1.73 33 10 56 13
5.00 4.54 6.9 0.00 5.09 1.63 46 11 84 19
Panel B: fwer+ with use as the covariate the ACF1 of past 24-month excess returns
0.01 5.18 8.0 0.00 5.59 2.26 15 4 25 6
1.00 4.33 6.9 0.00 4.84 1.55 33 10 56 14
5.00 4.37 6.9 0.00 4.83 1.60 46 15 82 19
Panel C: fwer+ with use as the covariate the ACF1 of past 36-month excess returns
0.01 5.24 8.1 0.00 5.64 2.26 15 4 25 6
1.00 4.44 7.2 0.00 4.94 1.59 34 10 56 13
5.00 4.45 7.0 0.00 4.91 1.61 46 15 87 19
Panel D: fwer+ with use as the covariate the ACF2 of past 12-month excess returns
0.01 4.89 7.0 0.00 5.36 2.07 15 4 26 6
1.00 4.40 7.3 0.00 4.90 1.60 33 8 54 14
5.00 4.43 6.9 0.00 4.94 1.60 46 14 88 19
Panel E: fwer+ with use as the covariate the ACF2 of past 24-month excess returns
0.01 4.91 7.2 0.00 5.38 2.11 15 4 25 6
1.00 4.48 7.3 0.00 5.01 1.62 33 10 55 14
5.00 4.41 6.8 0.00 4.94 1.58 46 14 87 20
Panel F: fwer+ with use as the covariate the ACF2 of past 36-month excess returns
0.01 4.93 7.2 0.00 5.37 2.06 15 3 25 6
1.00 4.33 6.6 0.00 4.87 1.53 34 10 55 13
5.00 4.22 6.4 0.00 4.73 1.50 47 14 88 19
Panel G: fwer+ with use as the covariate the ACF3 of past 24-month excess returns
0.01 5.26 8.3 0.00 5.64 2.35 15 4 23 6
1.00 4.59 7.4 0.00 5.09 1.66 33 10 54 13
5.00 4.28 6.7 0.00 4.76 1.52 46 15 87 20
Panel H: fwer+ with use as the covariate the ACF3 of past 12-month excess returns
0.01 5.24 8.4 0.00 5.62 2.39 15 4 25 6
1.00 4.42 7.1 0.00 4.93 1.61 33 10 55 13
5.00 4.15 6.6 0.00 4.60 1.47 46 15 83 19
Panel I: fwer+ with use as the covariate the ACF3 of past 36-month excess returns
0.01 4.96 7.4 0.00 5.42 2.15 15 4 25 7
1.00 4.56 7.5 0.00 5.07 1.65 33 10 55 13
5.00 4.22 6.6 0.00 4.68 1.51 46 14 87 20
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Table II: OOS performance of fwer+ portfolios with use of moment covariates. The table
reports the OOS performance of fwer+ portfolios with use of individual covariates in moment group.
Panels A to I report OOS annualized alpha as well as its t−statistic and p−value, excess return, Sharpe
ratio and a summary on the size of the fwer+ portfolios with use of the each covariate in moment group.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Portfolio Size

Average Min Max Std
Panel A: fwer+ with use as the covariate the kurtosis of past 12-month excess returns
0.01 4.94 7.2 0.00 5.38 2.11 16 4 25 6
1.00 4.37 7.2 0.00 4.87 1.63 32 9 55 14
5.00 4.39 7.0 0.00 4.88 1.58 45 13 86 20
Panel B: fwer+ with use as the covariate the kurtosis of past 24-month excess returns
0.01 4.89 7.0 0.00 5.35 2.06 15 4 26 6
1.00 4.50 7.8 0.00 5.00 1.68 33 9 55 13
5.00 4.18 6.4 0.00 4.70 1.48 45 14 86 20
Panel C: fwer+ with use as the covariate the kurtosis of past 36-month excess returns
0.01 4.94 7.2 0.00 5.40 2.10 15 4 25 6
1.00 4.35 7.3 0.00 4.85 1.60 33 10 55 13
5.00 4.17 6.5 0.00 4.67 1.48 45 13 87 20
Panel D: fwer+ with use as the covariate the skewness of past 12-month excess returns
0.01 4.84 6.9 0.00 5.26 2.05 15 4 25 7
1.00 4.38 7.2 0.00 4.87 1.58 33 9 57 13
5.00 4.30 6.8 0.00 4.78 1.56 45 13 86 20
Panel E: fwer+ with use as the covariate the skewness of past 24-month excess returns
0.01 5.17 7.6 0.00 5.57 2.26 15 4 26 7
1.00 4.25 6.9 0.00 4.69 1.56 34 10 56 13
5.00 4.33 6.7 0.00 4.83 1.56 46 14 88 20
Panel F: fwer+ with use as the covariate the skewness of past 36-month excess returns
0.01 5.43 7.9 0.00 5.85 2.35 15 3 26 7
1.00 4.29 7.1 0.00 4.75 1.57 32 10 55 14
5.00 4.25 6.3 0.00 4.75 1.49 46 14 87 21
Panel G: fwer+ with use as the covariate the variance of past 12-month excess returns
0.01 4.90 7.0 0.00 5.31 2.03 16 4 29 7
1.00 4.51 7.5 0.00 5.01 1.65 34 10 64 15
5.00 4.15 6.2 0.00 4.68 1.49 48 13 90 22
Panel H: fwer+ with use as the covariate the variance of past 24-month excess returns
0.01 4.86 7.1 0.00 5.26 2.04 16 4 30 7
1.00 4.49 7.4 0.00 4.99 1.63 34 10 65 15
5.00 4.24 6.5 0.00 4.79 1.51 49 14 92 22
Panel I: fwer+ with use as the covariate the variance of past 36-month excess returns
0.01 4.91 7.3 0.00 5.34 2.12 16 4 27 7
1.00 4.45 7.2 0.00 4.96 1.60 35 10 65 15
5.00 4.36 6.8 0.00 4.90 1.58 49 14 97 23

Generally, we see that the performances of the fwer+ portfolios with use of different

individual covariates of the same sub-groups but differing in estimation windows tend

to be similar. This supports the use of a representative covariate such as PC1 for each

group as presented in our main manuscript.
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ID. Performance of fwer+ portfolios with use of simple p−values

As mentioned in our main manuscript, there might be concern in use of p−values with

HAC correction given the short IS time series. In this section, we present OOS perfor-

mance of the fwer+ portfolios with use of simple p−values, i.e., the p-values calculated

without using the HAC correction. The results are shown in Table III. The performance

metrics gained by the portfolios are uniformly higher than those gained by the portfolios

constructed with use of HAC correction. As also shown in Table IV, when the new co-

variates obtained by the four famous machine learning techniques are used, the fwer+

portfolios perform impressively with Sharpe ratio of more than 2 at all considering FWER

targets and more than 3 at the lowest considering FWER target.

Table III: OOS performance of fwer+ portfolios with use of simple p−values. Panels A
to D of the table report OOS performance metrics of the fwer+ portfolios with use each of R-square,
AUM, and PC1s of moment and persistent group as the sole covariate. The performance metrics include
annualized alpha as well as its t−statistic and p−value, excess return and Sharpe ratio and summary on
number of out-performing funds detected by the fwer+. Panel E reports these metrics of the fwer+

portfolio with use of all four mentioned covariates as inputs whereas panel F the performance metrics of
the equally weighted (EW ) and equally weighted plus (EW+) portfolios.

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of detected funds
Average Min Max Std

Panel A: fwer+ with use of R-square as the covariate
0.01 5.45 9.2 0.00 5.71 2.60 13 2 24 6
1.00 4.90 7.7 0.00 5.40 2.09 28 9 57 11
5.00 4.56 7.0 0.00 5.11 1.74 39 13 84 18
Panel B: fwer+ with AUM as the covariate
0.01 5.32 8.3 0.00 5.56 2.29 14 2 26 7
1.00 4.70 7.5 0.00 5.20 1.98 29 9 60 13
5.00 4.40 6.2 0.00 5.03 1.59 41 10 97 22
Panel C: fwer+ with use of PC1 of moment group as the covariate
0.01 5.37 8.7 0.00 5.62 2.45 14 2 30 7
1.00 4.51 6.6 0.00 4.99 1.91 29 9 69 13
5.00 4.81 6.8 0.00 5.45 1.65 41 11 108 22
Panel D: fwer+ with use of PC1 of persistent group as the covariate
0.01 5.39 8.6 0.00 5.63 2.42 13 2 23 6
1.00 4.78 7.2 0.00 5.28 1.96 27 9 59 12
5.00 4.69 7.0 0.00 5.26 1.83 37 10 83 17
Panel E: fwer+ with use of the R-square, AUM and PC1s of the two groups as the covariates
0.01 5.55 8.7 0.00 5.84 2.48 15 3 30 7
1.00 5.10 7.6 0.00 5.70 1.81 32 10 72 15
5.00 4.99 8.0 0.00 5.69 1.62 47 13 115 25
Panel F: equally weighted portfolios
EW 2.58 2.9 0.00 4.65 0.72 1067 350 1570 361
EW+ 3.00 3.7 0.00 4.77 0.80 761 273 1418 324
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Table IV: OOS performance of fwer+ portfolios with use of new covariates and simple
p−values. Panel A (B, C and D) reports OOS annualized alpha as well as its t−statistic and p−value,
excess return and Sharpe ratios and summary on the size of the fwer+ portfolios with use of funds’
future return predicted by LASSO (GB, RF and DNN) model at given FWER targets τ .

τ (%) Alpha (%) t−statistic p−value Return (%) Sharpe Ratio
Number of detected funds
Average Min Max Std

Panel A: fwer+ with use of future return predicted by the LASSO model as the sole covariate
0.01 5.96 11.8 0.00 6.18 3.33 13 2 22 6
1.00 5.49 9.8 0.00 5.98 2.58 25 8 49 10
5.00 5.16 8.6 0.00 5.76 2.24 35 10 81 16
Panel B: fwer+ with use of future return predicted by the GB model as the sole covariate
0.01 5.75 11.4 0.00 6.01 3.22 13 2 23 7
1.00 5.01 7.9 0.00 5.54 2.39 26 9 56 12
5.00 4.93 7.6 0.00 5.55 2.13 36 10 80 19
Panel C: fwer+ with use of future return predicted by the RF model as the sole covariate
0.01 6.61 9.0 0.00 6.81 2.46 12 2 22 6
1.00 5.23 8.2 0.00 5.75 2.38 25 9 50 10
5.00 5.12 7.8 0.00 5.82 2.01 35 10 81 17
Panel D: fwer+ with use of future return predicted by the DNN model as the sole covariate
0.01 5.91 11.7 0.00 6.20 3.28 13 2 23 7
1.00 5.08 8.3 0.00 5.61 2.39 26 5 56 12
5.00 5.16 8.2 0.00 5.80 2.20 36 9 77 18
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